

B. P. Poddar Institute of Management & Technology Department of Electronics & Communication Engineering

Course Data Sheet

Academic Year: 2018-2019, Even Sem

Program: ECE	Degree: B.Tech
Course: Digital Signal Processing	Semester: 6th Credits: 3
Course Code: EC602	Course Type: Core
Course Area/Domain: Signals	Contact Hours: 3L/Week.
Corresponding Lab Course Code: EC692	Lab Course Name: Digital Signal Processing Lab

MAKAUT	Syllabus:	
MODULE	Торіс	HOURS
Ι	Discrete-time signals:(3) Concept of discrete-time signal, basic idea of sampling and reconstruction of signal, sampling theorem, sequences – periodic, energy, power, unit sample, unit-step, unit-ramp, real & complex exponentials, arithmetic operations on sequences.	
	<i>LTI Systems:(6)</i> Definition, representation, impulse response, derivation for the output sequence, concept of convolution, graphical, analytical and overlap-add methods to compute convolution supported with examples and exercises, properties of convolution, interconnections of LTI systems with physical interpretations, stability and causality conditions, recursive and non-recursive systems.	9
Π	 Z-Transform:(6) Definition, mapping between s-plane and z-plane, unit circle, convergence and ROC, properties of Z-transform, Z-transform on sequences with examples and exercises, characteristic families of signals along with ROCs, convolution, correlation and multiplication using Z-transform, initial value theorem, Perseval's relation, inverse Z-transform by contour integration, power series & partial-fraction expansions with examples and exercises. Discrete Fourier Transform:(5) Concept and relations for DFT/IDFT, Twiddle factors and their properties, computational burden on direct DFT, DFT/IDFT as linear transformations, DFT/IDFT matrices, computation of DFT/IDFT by matrix method, multiplication of DFTs, circular convolution, computation of circular convolution by graphical, DFT/IDFT and matrix methods, linear filtering using DFT, aliasing error, filtering of long data sequences – Overlap-Save and Overlap-Add methods with examples and exercises. Fast Fourier Transform:(4) Radix-2 algorithm, decimation-in-time, decimation-in-frequency algorithms, signal flow graphs, Butterflies, computations in one place, bit reversal, examples for DIT & DIF FFT Butterfly computations and exercises. 	15

ш	<i>Filter Design:(5)</i> Basic concepts of IIR and FIR filters, difference equations, design of Butterworth IIR analog filter using impulse invariant and bilinear transforms, design of linear phase FIR filters, no. of taps, rectangular, Hamming and Blackman windows.	5
IV	 Digital Signal Processor:(4) Elementary idea about the architecture and important instruction sets of TMS320C 5416/6713 processor, writing of small programs in Assembly Language. FPGA:(3) Architecture, different sub-systems, design flow for DSP system design, mapping of DSP algorithms onto FPGA. 	7
	TOTAL HOURS	36

Course Pre-Requisites:

Course Code	Course Name	Description	Sem
EC303	Signals &Systems	Basic Signals, Laplace, Fourier,Z	3
		transforms.	

Course Objectives:

The purpose of this course is to

1	Students will be able to acquire the knowledge of Digital Signal Processing fundamentals to apply that for LTI system.
2	Students can master the various transformation techniques so that the students become proficient in implementing the same in various applications.
3	Students can learn the basic forms of FIR and IIR filters and how to design filters with desired frequency response.
4	Elementary idea about TMS320C 5416/6713 processor, FPGA will be taught to the students.

Course Outcomes:

CO	Description	Cognitive Level
CO1	Explain the basic concepts related to discrete signals and their properties.	Understand
CO2	Able to understand the basic concepts of convolution and apply their properties for LTI System.	Apply
CO3	To Apply Z-transform and its properties for the analysis of Digital Signal & System	Apply
CO4	Understand basic concept of frequency transformation for filtering.	Understand
CO5	To Apply DFT and FFT for frequency domain analysis of signal.	Apply
CO6	To design FIR and IIR Filter and understand DSP processor, FPGA fundamental.	Create

S.NO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C602.1	3											1	3	2
C602.2	3	2										1	3	2
C602.3	3	2										1	3	2
C602.4	3											1	3	2
C602.5	3	2										1	3	2
C602.6	3	1	2									2	3	2
	3	1.75	2									1.17	3	2

Course Outcomes (CO) to Program Outcomes (PO) & Program Specific Outcomes (PSO) mapping:

Note: Correlation levels are as defined: 1: Slight (Low) 2: *Moderate (Medium)* 3: *Substantial (High). If there is no correlation, put "-"*

POs & PSO Reference:

PO1	Engineering knowledge	PO7	Environment and	PSO1	Students will acquire
			sustainability		knowledge in Advance
PO2	Problem analysis	PO8	Ethics		Communication Engineering, Signal and
PO3	Design/development of solutions	PO9	Individual and team work:		ImageProcessing,EmbeddedandVLSISystem Design.
PO4	Conduct investigations of complex problems	PO10	Communication	PSO2	Students will qualify in various competitive
PO5	Modern tool usage	PO11	Project management and finance		examinations for successful employment, higher studies and
PO6	The engineer and society	PO12	Life-long learning		research.

GAPS WITHIN THE SYLLABUS:

Sl. No.	Торіс	Proposed Actions	СО	РО	PSO
1	Application of DSP to Speech & Radar	Topics to be covered Topics to be covered within the syllabus	CO5	PO1,PO2,P 012	PSO2

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

Sl. No.	Торіс	Proposed Actions	РО	PSO
1	Basics of Adaptive Signal Processing	Topics to be covered beyond the syllabus	PO1,PO2, PO3,PO4, PO12	PSO2

WEB SOURCE REFERENCES:

1	http://nptel.ac.in/courses
2	https://ocw.mit.edu/resources
3	https://www.tutorials.com/digital signal processing.
4	https://www.dspguide.com

LESSON PLAN

Lec	Module	Topics to be covered	Refere	Teaching	Teaching
ture			nces	Aid	Methodolo
No.					gy
		Class of course objective & course outcome		GGB,	Chalk &
				Chalk &	talk,
				Duster,	Discussion,
				Projector	PPT
1.			T1,T2,	GGB,	Chalk &
		Introduction to Digital Signal Processing	T3	Chalk &	talk,
				Duster	Discussion
2.		Continuous & discrete valued signals, some	T1,	GGB,	Chalk &
		elementary discrete time signals, classification &	T2,T3	Chalk &	talk,
		simple manipulations of discrete time signals.		Duster	Discussion
3.	т	Sampling & reconstruction of signals, sampling	T1,T4	GGB,	Chalk &
	1	theorem		Chalk &	talk,
			T2 T2	Duster	Discussion
4.		Periodic, energy, power signals, concept of stability	12,13	GGB,	Chalk &
		& causality		Chalk &	taik,
5		Classification of discusts time signals whit immulas	T1 T2	CCD	Challe &
5.		stan & rown signals, real & complex exponentials	11, 12	Challe Pr	$C_{\text{nalk}} \propto 1$
		arithmatic operations of discrete time signals		Duster	Discussion
6		antimette operations of discrete time signals.	T1 T7	GGR	Chalk &
0.		Definition of linear time invariant system, technique	T1,12,	Chalk &	talk a
		for analysis of LTI systems	15	Duster	Discussion
7		Resolution of discrete time signals onto impulse	т1 т2	GGB	Chalk &
/.		impulse response & convolution sum	T3, 12,	Chalk &	talk
			10	Duster	Discussion
8.		Concept of convolution, graphical, analytical &	T1.T3	GGB.	Chalk &
		matrix method exercises) -	Chalk &	talk,
				Duster	Discussion
9.		Properties of convolution, application, correlations,	T1,T	GGB,	Chalk &
		auto correlations & cross correlations.	2,T3	Chalk &	talk,
				Duster	Discussion
10.		Input-output description and block diagram	T1,T2	GGB,	Chalk &
		description, Interconnection of LTI system with		Chalk &	talk,
		physical interpretations		Duster	Discussion
11.		Stability and causality conditions, recursive and	T1	GGB,	Chalk &
		non-recursive systems.		Chalk &	talk,
				Duster	Discussion
12.		Definition of Z-transform & inverse z-transform,	T1,T2,	GGB,	Chalk &
		and region of convergence, relation between s-plane	13	Chalk &	talk,
11	. 11	& z-plane, unit circle	T1 T2	Duster	Discussion
11.		Proportion of a transforme theorem	11,12, T2	GGB, Challr ⁰	Chaik &
		Properties of z-transform, theorems	13	Unaik &	Discussion
12		Dational 7 transform notas & range and	т1	CCP	Challe 0
12.		functions convolution correlation & multiplication	11	Challe P-	tolk &
		using z-transform		Duster	Discussion
13		Inverse z-transform by nower series & partial	Т1 Т3	GGB	Chalk &
13.		fraction expansion, example & exercises	11,15	Chalk &	talk
	1	interior enputition, enumpre a energies			

			Duster	Discussion
14.		T2.T3	GGB.	Chalk &
	Inverse z-transform by contour integrals expansion,) -	Chalk &	talk.
	example & exercises		Duster	Discussion
15.		T1.T2.	GGB.	Chalk &
_	Initial & final value theorem, perseval's relations,	T3	Chalk &	talk.
	solution of difference equations using z-transform		Duster	Discussion
16.	Frequency analysis continuous time signals, power	T1	GGB.	Chalk &
- • •	density spectrum of periodic signals. Fourier series		Chalk &	talk.
	& Fourier transform, frequency& time domain		Duster	Discussion
	signal properties			
17.		T1.T3	GGB,	Chalk &
	Frequency domain sampling & reconstruction of	,	Chalk &	talk.
	discrete time signals		Duster	Discussion
18.		T1.T2	GGB.	Chalk &
	DFT & IDFT, definitions, examples & exercises	,	Chalk &	talk.
			Duster	Discussion
19.		T2	GGB,	Chalk &
	I widdle factors & their properties, computational		Chalk	talk.
	burden on discrete DFI		&Duster	Discussion
20.		T2,T3	GGB,	Chalk &
	DFT as linear transformation, relationship of DFT	· · ·	Chalk &	talk,
	with z-transform		Duster	Discussion
21.		T2,T3	GGB,	Chalk &
	Circular symmetry, circular shift, circular	,	Chalk &	talk.
	convolution		Duster	Discussion
22.		T1,T3	GGB,	Chalk &
	DF1/IDF1 matrices, computation of DF1/IDF1 by	· · ·	Chalk &	talk,
	matrix method, multiplication of DF1s		Duster	Discussion
23.		T1,T2,	GGB,	Chalk &
	Computation of circular convolution by graphical,	T3	Chalk &	talk,
	matrix& concentric circle method, examples		Duster	Discussion
24.		T1,T2	GGB,	Chalk &
	Linear filtering using DFT, Aliasing error, examples		Chalk &	talk,
			Duster	Discussion
25.	Filtoning of long data acquances evention add &	T1	GGB,	Chalk &
	everlap save methods, examples		Chalk &	talk,
	 overlap-save methods, examples		Duster	Discussion
26.	Divide & conquer approach to computation of	T1	GGB,	Chalk &
	DFT Radix-2 algorithm		Chalk &	talk,
			Duster	Discussion
27.	signal flow graphs Butterflies computation in	T1	GGB,	Chalk &
	signal now graphs, Dutternies, computation in		Chalk &	talk,
			Duster	Discussion
28.		T2,T3	GGB,	Chalk &
	Decimation in time algorithm for FFT		Chalk &	talk,
			Duster	Discussion
29.		T2,T3	GGB,	Chalk &
	Decimation in frequency algorithm for FFT		Chalk &	talk,
			Duster	Discussion
30.	Examples & exercises of FFT algorithm	T1,T2,	GGB,	Chalk &
		T3	Chalk &	talk,

				Duster	Discussion
31.	31. 2. III 3. 4. 35.	Direct form, cascade form, frequency sampling & lattice structures of FIR filters of FIR filter	T1,T2,	GGB,	Chalk &
			T3	Chalk &	talk,
				Duster	Discussion
32.		Direct form, cascade form, parallel form & lattice & ladder form structures of IIR filter	T1,T	GGB,	Chalk &
			2,T3	Chalk	talk,
				&Duster	Discussion
33.		Difference equations, Design Butterworth IIR analog filter	T2,T3	GGB,	Chalk &
				Chalk &	talk,
				Duster	Discussion
34.		IIR filter design using Impulse Invariant & Bilinear transformation	T1,T2,	GGB,	Chalk &
			Т3	Chalk &	talk,
				Duster	Discussion
35.		Design of linear phase FIR filter ,no. of taps, rectangular Hamming and Blackman windows	T2,T4,	GGB,	Chalk &
			Т3	Chalk &	talk,
				Duster	Discussion
36.		Architecture of the TMS320C5416 processor	T3,T4	GGB,	Chalk &
				Chalk &	talk,
				Duster	Discussion
37.	IV	Elementary idea of important instruction sets of TMS320C5416/6713	T3,T4	GGB,	Chalk &
				Chalk &	talk,
				Duster	Discussion
38.		Small programs of convolution, signal processing, DFT& filter design using TMS320C5416	T3,T4	GGB,	Chalk &
				Chalk &	talk,
				Duster	Discussion
39.		Architecture, different sub-systems,	T3,T4	GGB,	Chalk &
				Chalk &	talk,
				Duster	Discussion
40.		Design flow for DSP system design, mapping of DSP algorithms onto FPGA.	T3,T4	GGB,	Chalk &
				Chalk &	talk,
				Duster	Discussion

L= Lecture T= Tutorial GGB= Green Glass Board *Gap

Text Books:

T1.John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing principles, algorithms, and applications, 4th edition.

T2. Boylestad P.R.Babu, Digital signal processing, 4th edition.

T3.S Salivahanan, A Vallavaraj, C.Ganapriya, Digital signal processing, 2nd edition.

T4. A. Nagoor Kani, Digital signal processing, 2nd edition.

REFERENCE BOOKS:

1. Digital Signal Processing, P. Rameshbabu, Scitech Publications (India).

- 2. Digital Signal Processing, S.Salivahanan, A.Vallabraj & C. Gnanapriya, TMH Publishing Co.
- 3. Digital Signal Processing; A Hands on Approach, C. Schuler & M.Chugani, TMH Publishing Co.
- 4. Digital Signal Processing, A. Nagoor Kani, TMH Education

5. Digital Signal Processing S. Poornachandra & B. Sasikala, MH Education

6. Digital Signal Processing; Spectral Computation and Filter Design Chi-Tsong Chen, Oxford University Press

7. Texas Instruments DSP Processor user manuals and application notes.

8. Xilinx FPGA user manuals and application notes.